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Converging spherical, cylindrical and plane shock waves in a variable- 
density gas have already been discussed in [ 1 1. The initial (undis- 
turbed) condition of the ideal gas was given in the form 

where r, p. p, v are, respectively. the distance of particles from the 

center (or plane) of symmetry, the pressure, density and mass velocity. 
whilst p,,, s and w are constants, A converging shock wave propagates 
through the gas in state (1) according to a power law in terms of time. 
It was demonstrated in [ 1 1 that, depending on the quantities s and v 
(v = 1, 2, 3 for plane, cylindrical and spherical waves, respectively), 
there occur qualitatively differing cases of behavior of the converging 
waves when r + 0. 

For s < 2(v - 1). shock waves increase in intensity without limit, or 
reach a constant intensity when r + 0; in that case it is possible to 
construct self-similar solutions with implosion waves which possess these 
features. An analysis of such self-similar solutions reveals that after 
reflection from the center (axis) of a constant-intensity wave the gas 
behind the reflected front comes to rest at constant pressure. 

When s > 2(v - 1). there are no longer any such self-similar solu- 
tions. For such cases in [ 1 I, solutions of the linearized gasdynamic 
equations are constructed, which describe the motion of a gas in the 
case of a weak converging shock wave. An analysis of the solutions has 
revealed that the conditions of linearization are fulfilled when r + 0, 
t + 0. where s > 2(v - 1); in particular, the intensity of the converg- 
ing waves tends to 0 when r + 0. 

However. according to the linear solution, both pressure and particle 
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velocity increase without limit close to the front. Linear equations 
should therefore not he used in the neighborhood of the reflected front 
where nonlinear terms are so important. 

In this paper we construct a solution which takes account of the non- 
linear terms and is valid asymptotically (for r + 0). and is also valid 
close to the reflected front. To do this, use is made of the simultaneous 
expansion in series of both dependent and independent variables, which is 
the method described in [2 ] due to Poincar6, Lighthill and Go. 

Landau [3 I was the first to study nonlinear effects in weak diverging 
waves, whilst Gubkin [ 4 I deals with a gas of variable density. 

The velocity, pressure and density of the gas before the disturbance 
starts are assumed to be given by Formula (11, where s > 2(v - 1) and 
u(r, t) is the particle displacement reckoned from the initial condition. 
‘lhe equations for the one-dimensional adiabatic motion of an ideal gas 
can be taken in the form (r is a Lagrange coordinate) 

p 0 $- up (1+ S)= 0PP-1, (1+ &) p !$ + $ = 0 (2) 
pp-y = po (OrS)-Y 

‘lhe first of the two equations of system (2) express the conservation 
of mass and of impulse, whilst the third expresses the conservation of 
particle entropy (Y is the adiabatic index). In general, the latter con- 
dition does not hold in the presence of shock waves, but it can be 
assumed to be approximately valid for weak waves, for the jump in entropy 
in them is a third-order quantity as compared with the rise in velocity 
or pressure. In the solution which will be constructed here, the shock 
waves are weak, so that the assumption can be justified. 

The first and third equations of system (2) allow us to express p and 
p in terms of u: 

p=po (l+~)-y(~+$~-y(‘-l), p=Or’(1+~)-1(1+~)l--‘ (3) 

If we substitute Equations (3) in the momentum equation (2), we find 
an equation for the function u( r, t): 

The characteristics of this nonlinear hyperbolic second-order 
are determined by the equation 

equation 

(5) 
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If we linearize Equation (4), assuming u << r and dU/dF << 1, its 
characteristics near r = 0, t = 0, as 
follows from (5), will be the parabolas 

These are shown in Fig. 1 as curves L, 
and L, in the rt-plane and represent fronts 
of converging and of reflected waves in the 
linear approximation. Instead of t, now, we 
introduce a new dimensionless variable x: 

Fig. 1. 
x= 1 t2+ s)=tr,2+s),2 + 

2 [ 2l/w 
1 1 (6) 

It is evident. that I: = 0 on curve L,, and x = 1 on curve L,. We will 
assume u to be a function of z and of F, and we will denote du/ax(x, r) 
by z(x, r). Going over to the new variables, now, instead of Equations 
(4), we arrive at a system of two equations for the functions u(x, r) and 
AZ, r): 

au -- 
ax z=o (7) 

b(1 -q+ +[(I + 2 + q2 !+q’+l p+ p)cy-l)(“-lLq}~ - 

2(1-24 a2 
-p-g+-. 2+s 5F+ 2(2+s) 

6+s-2v (1 --q~_ 

- 

In order to solve system (7) we formally expand the required functions 
and one of the independent. variables in a series of powers of the other 
independent variable, i.e. we obtain 

u 2 &,‘+k&O (5) + C*ql+*kw(l) (E) + . . . 

z = Cql+kq'o' (E) + C*ql+*kq(l) (E) + . . . 

x=E + c rlk q(l) (E) + * * * 
r = q 

(8) 

In the expansions (8) C is an arbitrary constant of dimensions (cmmk), 
whilst all the w("), q("j, I$(") are dimensionless functions of the new 
dimensionless argument 4. From now on we will dro the indices of the 
functions V(O),_ q(O) and qS(l), i.e. W(O) = W, gfoY= q, c#J(~) = 4. 

If we differentiate the expansion,fos x with respect, to x and I-, we 
find the derivatives 
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aE - = 1 - cq”cp’ (E) - . . . , 8X 
2 = - Cjcqk-lcp (E) _ . . . 

With the help of these equations we express the derivatives with re- 
spect to x, F, in terms of derivatives with respect to the new variables 
6, 7. We then obtain (strokes denoting differentiation with respect to 

5‘) 

& = (I- C$,j - . . . ) $ , 2 ==a -& - (Ckqk-‘cp + . . *)$ (9) 

On transforming system (7), using (8) and (9)) i.e. on going over to 
the new variables, and on expanding in powers of II, we find that the 
left-hand sides of Equations (7) are power series in 7 of the type 

i a(n) (E) ql+(n+l)A 

ll=0 

If we equate coefficients of successive powers of 7 to zero, we arrive 
at ordinary differential equations for functions w (n) , q(“). The system 
of equations for the nth approximation will be of the form 

dw(“’ 

(10) 

- 4k (a + I)i(n + 1) k + VI W(n) = g(n) 

(2 + @a 

Ibis system is linear as to the functions 111 (n) and q( n); the right- 

hand side of the first equation ffn) depends only on v(~)‘; +‘j)‘; and, 

further, g(“) is a function also of uti), 4(j), qti), qfi)‘. (0 < i d 
II - 1, 1 <j < n) and explicitly a function of 5. The functions +cn)([) 
can be chosen arbitrarily. 

For the zero approximation f(O) = g(O) = 0, and therefore q = w’.. For 
the first approximation system (n = l), on carrying out the given ex- 
pansion in 7, we find 

j(l) = WIT’, ~$1) = P + Q’P + Rqf (11) 

Here P, Q, R are definite functions of 5, w, ID‘. and w’*.(in this case 
q = ~‘3; they are 

p,r+=+s ---(25-l)w’w”--2_[(r-l)(v-1)+(~+ I)(1 +k)]Uw’+ 
4 4 

(12) 
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Evidently the zero approximation for the solution of the nonlinear 
equations, in which the following are assumed 

n = C~l~k~{~), 2 = Cqlfkq (EJ, Z = E, r--q 

is in fact the exact solution of the linearized equations. Such a linear 
solution, which represents the reflection of a converging wave, has been 
constructed in [ 1 I , The function w(& satisfies the hypergeometric equa- 
tion derived from system (10) for n = 0. 

Before the advent of the disturbance (4 < O), we have w = q 3 0 with- 
in the region 1 of Fig. 1. ‘Ihe solution in region 2 (0 < 6 < 1) satisfies 
initial conditions m(O) = 0, lo’(O) = 1, which means that at the front of 
a converging wave the motion is continuous, whilst pressure and velocity 
experience a finite jump. lhese conditions can only be fulfilled when 

k-‘+’ ---+>o 
4 fS>Z(V- 1)) (13) 

which fixes k. 

In region (3) (1 < 5 <c+=) the solution should satisfy boundary condi- 
tions expressing the absence of any source or sink when F = 0 (v(O,t)=O) 
and the continuity of motion on the reflected front. 

Under these conditions the solution of the zero approximation has the 
following form (subscript denotes number of region): 

u.$=EF(1-&, s; 2; 51, 92=F(i ---a, s; 1; Ef 

r (1 -E) 
wQ = r (1 + e) I- (2 - 2E) 

teF(-&, I- 8; 2-2-S; j-9 

I- (1 ---I 
g3 = r (a) r (2 - 2E) 

yj?y-&, 1-E; 2-2s; E-1) 

where F is a hypergeometric series. 

In the solution under discussion it follows from (31, (6) and (8) 
that displacement, velocity and pressure can be expressed in terms of 
~(6) in the following manner: 

(14) 
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(15) 

Let us calculate the pressure jump (ApI* at the front of a converg- 
ing wave (for [ = 0). Bearing in mind that ~(0) = 0, w'(O) = 1, we find 
from (15) that* 

(AP)~ = --paC2+qk (16) 

Owing to the fact that compression takes place in the shock wave and 
(ApI@ > 0, we have to assume that C< 0. 

We look for an expansion of solution (14) in the neighborhood of the 
point I$ = 1 (the front of the reflected wave). To do this we use the 
formula [5 3 for the analytic ~~tinuation of the hypesgeometric series 
with a special relation between its parameters 

The following notation has been used in (17): 

~n=Il(~fl)C~(~+~+I)-~(~+~+n)-g(~+n+m) 
$(%, = dInI? (cc)/&, (a), = a (a + 1). . . (cc -j- n - I), (a)* = 1 

whilst when m = 0 the first term on the right-hand side of (17) should 
be considered equal to zero. 

If we write down the hypergeometric series (141 according to Formula 

(I?), we can find the required expansions 

* The formula in geometric acoustics; Ap = con& (per 
l-vp12 

, where 

c is the velocity of sound, also leads to the same law of pressure 
change at a converging wave front (for the same value of k). 
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w2,3 = AB-l + A (I- E) In 11 - E I + 0 (1 - E) (18) 
w2,3’c q2,3 = - A In II - E 1 - A4&,3 -f- 0 [(I - E) In I * - E 11 

W2.3 ” = A (1 - E)-l + AB In II - E 1 + 0 (1) 

In these relations (18), the coefficient D, should apply to region 2, 

D, to 3, whilst A and B are the same for both regions and are given by 

A = -$cos es>O, B=-);--(+s)2>0 

D,=2E+4(~-~)+~(;+~~~ &=2E+W(;++J 
(19) 

Here E = 0.577, which is Euler’s constant. From a well-known identity 
[ 6 1 for the logarithmic derivative of Euler’s Gamma Function 1/4.(x), we 
have 

Substitute the expansion (18) in Formula (12) to find the expansions 
of functions P, Q, R near the point 4 = 1: 

p = _ (r + 1)(2 + d A2 In / i -it 1 

16 l--E 
+ & 4- 0 On2 I 1 - E I) (21) 

Q=(~-2~~~-tO(lnI*-~I), R = A + 0 [(I - E) In II - E II 

G, 3 = _ (7 + l)(s + 2, 
16 A2L&- (y-I)@-l)+(y+l) 6+;-2v]$ 

It is evident from the last equation that the coefficient G has 
different values in regions 2 and 3. 

‘Ihe linear solution constructed above embodies, for [= 1, a singular- 
ity which should not occur with an exact solution of the nonlinear equa- 
tions and which leads to infinite velocity and pressure at the reflected 
front. It is evident from Equation (10) that the functions w(~), 
q(“)(n = 1, 2, . ..I, in general, 

C= 1, 

also have singularities at the point 
and therefore the above approximations might worsen the solution 

of the zero approximation. ‘Ihe idea of the Poincar&Lighthill-Go method 
is to lower the order of singularities by suitable choice of the function 
4(n) . 

‘Ihe right-hand side g 
has, 

(I) of the first approximation equation (n = 1) 
at $6(t) = 0, a singularity at the point 5 = 1, the character of 

which is defined by the expansion P in Formulas (21). It can be lowered, 
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as seen from (ll), (12) and (21), by taking the function + in regions 2 

and 3 equal to 

cpz,s(E) = - @~%,a t- B/l--l (T&a- @%z) F&3 

=~ln~l-E~+~~,3+OI(l-~)~nl~-~Il (22) 

The constants Cp, T2 and T3 are determined from the condition that the 
coefficients of the two first terms in the expansion (1) 

terms of the order (l- E>-' log (1 - 0 and (1 - [)-'. 

vanish, i.e. 

We thus obtain 

If r#~ is given by Formulas (22), (23), then the functions f(l), g(l) 

will be of order f(l) = O(l- 4‘>-' log (1 - E), g(l) = 0 log2 (l- 0, 

whilst the solutions to the first approximation equation w (1) 

of order w(l) 

, g(l) are 

= 0 log2(1- 5), q (l) = 0 log*(l- 4). Hence the ratio be- 
tween the second and the zero approximations in expansion (8) is 

ql+‘lI w (1) pq’+?kqW 

CI1 l+k, 
= ~kO(ln2~l-~J), 

CTj'+kQ 
=$O(lnjl-EJ) 

We will demonstrate below that the solutions do not have a physical 

meaning for all values of t, indeed only for ( l- (1 > aqk (where a is a 
positive constant), and therefore these ratios tend to zero for '1 0 even 

on the reflected front. 

In the following, therefore, we will confine ourselves to the first 

term only in the expansions (8) for u and z, whilst for x we will use 

the first two terms. In this approximation the solution is constructed 

already, because functions II), q, and 4 have been found. When the differ- 

ence (l- 5) differs significantly from zero, the solution hardly differs 

from the linear one for 9 + 0, for x is very close to 5, whilst functions 

w and q are discontinuous for [&xl. 

'Ihe connection between x and t for 5 close to unity is expressed by 

the following formula, derived from (8) and (22): 

1--z=1-~-C~k(~ln~1-~~++',,3) (24) 

Here, for 5 < 1 one should take T2 and for t > 1, T3. The relation 
between (1 - x) and (1 - 5) for small fixed values of q is shown in 

Fig. 2, where C is assumed negative; for C positive the direction of the 
coordinate axes in Fig. 2 should be changed. The magnitude of (l- x) 
has a maximum for 1 - 5 = C@qk < 0, and it tends to - m when 4 + 1. 
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In a solution which has physical meaning, 5‘ should be a single-valued 

function of x and 9 (i.e. r and t). Otherwise, w and q, which depend on 

5, will also not be single-valued functions of x and r, which, in view 

of Formula (15), leads to multiple-valued displacement, velocity and 

pressure as functions of the coordinates and of time. 

In order to ensure a single-valued relationship between c and x it is 

necessary to pass from one branch of the curve (24) to the other, as is 

shown in Fig. 2. In this case, 1 - [ will be a monotonically increasing 

discontinuous (with a break) function of 1 - x; when x = X* it has a jump 

froml- t, < Oto l- t2, whilst it does not have any values between 

l- 5, and l- 5,. It is obvious that for a single-valued relation between 

1 - 5‘ and 1 - x the following condition should be fulfilled: 

The position of the jump is completely defined by the magnitudes t2 

and &; they, just like the whole curve in Fig. 2, depend on q. One 

(algebraic) equation connecting tz and 5, will be found from the condi- 

tion that 1 - x has one and the same value as 1 - x* when E = tz and 

[= 6,. From (24) we get 

To find the second equation we notice that the discontinuity in the 

function [(z, 9) denotes a jump in the 

physical quantities on the reflected front. 

(h substituting expansion (18) in Formula 

(151, one can see that the conditions of 

continuity of displacement and conservation 

of momentum at the front of the reflected 

wave, i.e. 

u2 = u3, P2 - Pi3 == 1/TPlw” (% - %) 

are automatically fulfilled with our 

approximation. 

A further condition should be fulfilled 
Fig. 2. 

on the shock wave, which can be formulated (for a weak shock) in the 

following manner: angles made by the trajectories of a wave in the rt- 

plane with the characteristics are equal on both sides of the wave [7 1. 

If t(r) is the trajectory of the reflected front, we obtain, approximately, 
from (5) 
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In this equation we transform to the variables x, r and express t 
through x by using (6). We then insert the expansion (8), limiting our- 
selves to the approximations taken there. The functions w and w’.of the 
arguments 5, and t3 can be represented in the form (X3), retaining only 
the main terms, whilst we will express x through 7 and t,(n) by Formula 
(24). A differential equation connecting t2(q) and t3(q) will be ob- 
tained: 

-22(1-%E,)+2(1+2~)(~~n11-%~I+~z)Crlk+ 

=[(~-~)(v-1)-+~~(6+,_2v)]~Cr/” + 

-- CqkA [In [I - Ez 1 --I- In Ii- c3 I+ D, + D,] (26) 

We will seek a solution of the systems (25), (26) in the form 

I -- %?; == - hCO,yk, 1 - & = /LCDTlk, h>O, P>O (C<O) 

where X, p are constants; here too, the natural initial condition x 
for n = 0 is fulfilled, i.e. the jump in the rt-plane is tangential 
the characteristic of the linear equation. 

(27) 

= 1 
to 

If the substitution (27) is carried out, terms of the type qk log 77 
in Equation (26) will cancel, and after cutting off at qk the relations 
(25) and (26) will yield a system of two transcendental equations for 
the quantities X and ,u (in the transformations we make use of the values 
of the constants from Formu.las (19), (20), (21) and (23)): 

h-.tp+-In+ tannY._ _0,2h + 2-t. ]I,?- -.~tan3tY 10 
2+s IL 2+s 

From this, h = p - 2, whilst for p we arrive at the equation 

(28) 

The left-hand side of Equation (28) at p > 2 is a monotonically in- 
creasing function of ~1, tending to - m when p + 2 + 0 and to + 00 when 
p + + m.Consequently, Equation (28) has the one root ,LI > 2. Here, 
1 - [, < CQ7+, 1 - 5, > 0, as it should be. The value of p can be found 
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easily for given values of v and s. 

Thus, all solutions, including the reflected wave front, are fully 
constructed in this approximation. The position of the reflected front 

is determined by Formulas (27); if we substitute these into Equations 
(24) and (6), we find the more accurate trajectory of the discontinuity 
in the rt-plane 

t* = 
a-r/w 

- 
(2 + s) VTPO 

r@+s)lz [I,+ 2CkOrk In r -+ 0 (I.~)] 

It is represented by the curve L in Fig. 1. 

From Equations (27) and (15) we obtain the displacement, velocity and 
pressure close to the reflected front 

u = CAB-lrl+k + 0 (r1+2k In F) 

u-z - c ‘+ I/% Akrk--42 In r + 0 (r!+“/2) 

p---o= - yp,C~Akrklnr+O(rk) 

Using available formulas it is possible to find 
terms (not written down at first) df the expansion 
which the value of ~1 enters. 

‘Ihe pressure jump at the front of the reflected 

(151, is equal in the first approximation 

also the following 

of t*, v, and p into 

wave, according to 

Ap = p3 - p2 = - ypoC y rk [w’ (&) - w’ (t3)] 

We will work out the differences in the square brackets using Equa- 
tions (18) and (27), and also the constants determined above which enter 
the solution. Finally, if we compare the pressure jump in the reflected 
wave with that in the converging wave determined by Formula (16) to 
find their ratios for the same value of r, we obtain 

‘Ihe ratio of the velocity jumps has the same value. 

It is evident from Formula (29) that the reflected wave, just like 
the converging wave, is a compression wave and their intensities are of 
the same order of magnitude in r, which is of a higher order than the 
excess pressure p - p,, on the reflected front. ‘lhe behavior of p close 
to the reflected front at instant t close to 0 is depicted in Fig. 3. 
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Notice that if in our solution we 
assume C > 0 and therefore X < 0, 
p < 0, we formally arrive at the case 

P 

where the converging wave is a rare- 
faction wave. ‘lhe solution of (28) 
likewise proves to be unique, whilst 
u < 0 (a rarefaction wave reflects 
as a compression wave). If we 
eliminate p from Equations (28) and 
(29), it is possible to obtain an 
equation for 0: 

1 

r 

Fig. 3. 

JCV -+c- 
2+s 

Q mh[-$- set 2+s 
( 

0 - sin 2+ 
>I 

= 1 

For any value of s > 2(v - 1) this equation possesses two roots: a 

positive one a+ (for C < 0) and a negative one o_ (for C > 0); moreover, 
both roots increase monotonically with increase in nv/(2 + s) and 

I o- I G *+ Q 1. We give values of u+ and of u_ for several values of 

v* = C?rV/(2 + s)lO: 

v*= 0 15 30 45 60 75 90 

CT+ = 0.164 0.837 0.896 0.941 0.974 0.993 1.0 

6_ = -0.764 -0.676 -0.574 A.455 -0.319 -0.165 0.0 

‘lhus in the case of reflection of converging waves in a variable 
density gas with s > 2(v - l), the motion close to r = 0, t = 0 is a 
weak displacement. ‘lhe above discussion shows, however, that several 
important quantitative relations and qualitative features can only be 
established by taking into consideration nonlinear terms in the equation. 

‘lbe author wishes to express his gratitude to S.S. Grigorian for his 
advice and observations. 
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